
1

All-Pairs Shortest Paths
Lecture 07.08 by Marina Barsky

All-pairs Shortest Paths Problem

Input: directed graph G=(V,E) with edge costs C [no special

source vertex]

Output: if G has no negative cycles, the length of a shortest path

for each pair of vertices u,v ∈ V

All-pairs shortest paths: possible solutions

Use single-source shortest path algorithm:

Repeat n times (once for each vertex as a source)

1. If the costs are non-negative

O(n2 log n) if m=O(n) [sparse]

O(n3 log n) if m =O(n2) [dense]

2. If allowing negative costs:

O(n3) if m=O(n) [sparse]

O(n4) if m=O(n2) [dense]

Special Dynamic Programming algorithm:

1. Floyd-Warshall: always O(n3)

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =

All-Pairs Shortest Paths

Floyd-Warshall Algorithm

Dynamic Programming

Order of subproblems

Again – there is no “natural” ordering of subproblems: which subproblem is

smaller than the other?

Idea: we invent our own order of subproblems:

● We impose arbitrary ordering on vertices v1, v2, … vn

● Each vertex gets a numeric id: V = {1,2,…,n}

● Now we have a sequence {1,2,…,n} of vertices

● Similar to knapsack problem, in each iteration k we will compute all shortest

paths using only a subset of vertices {1,2,…k} as intermediate nodes on each

shortest path

Subproblem

● V={1,2,…,n}

● We are allowed to use only {1,…,k}

● Each subproblem P(i, j, k) represents the cost of the shortest path from i to j

using only the first 1…k vertices in the sequence

2

10

7

17

3

-10

2

-4

-10

5

i=17, j= 10, k= 5

P(i,j,k) = 3

Example

Optimal subproblems: intuition

When we allow the next k to be included as intermediate vertex on the path i~>j,

we have the following choices:

● New vertex k is not included as part of the shortest path from i to j.

The cost of the shortest path i~>j remains P(i,j,k-1)

● If vertex k is used to improve P(i,j,k-1), then k is internal to path P(i,j,k).

In this case both P(i,k,k-1) and P(k,j,k-1) are shortest paths which use first k-1

vertices [which we already computed as subproblems for k-1]

jki

We choose min between P(i, j, k-1) and [P(i, k, k-1) + P(k, j, k-1)]

All these min-cost paths are already computed in iteration k-1

Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n},

and the cost matrix C with all edge costs.

● For each pair (i,j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

P(i,j,0) =

Recurrence relation

● Input: directed graph G={V,E} – where vertices are numbered: V={1, …n},

and the cost matrix C with all edge costs.

● For each pair (i,j) ∈ V, let P(i, j, k) be the cost of the shortest path i~>j which

uses only k first vertices from V as intermediate nodes on the path.

● Base case: no intermediate vertices are allowed

0 if i=j

Cij if edge(i,j) ∈ E

∞ otherwise

● Recurrence: for any k, 0 < k ≤ n

P(i, j, k-1)

P(i, k, k-1) + P(k, j, k-1)

P(i,j,0) =

P(i, j, k) = min

Algorithm FloydWarshall (digraph G=(V, E), edge costs C)

A: = nxnxn 3D array indexed by k, i, and j

base case

for each i ∈ V:

for each j ∈ V:

if i=j A[0, i, i] := 0

else if (i, j) ∈ E A[0, i, j] := Cij

else A[0, i, j] := ∞

DP table

for k from 1 to n:

for i from 1 to n:

for j from 1 to n:

A[k,i,j] = min A[k-1,i,j], A[k-1,i,k] + A[k-1,k,j]

return A[n] # last matrix contains all-pair shortest path costs

Pseudocode

Total n3 subproblems with O(1) work per subproblem

Running time O(n3)

Floyd-Warshall algorithm: notes

● Negative cycles:

○ To trust the results – we need to check that graph does not have negative cycles

○ If we scan the diagonal of the final matrix A[n], then all values A[n, i, i] must be 0.

○ If any of distances from node i to itself is < 0 – graph contains negative cycles

● Space improvement:

○ We do not have to store the entire 3D array to recover actual shortest path

between a pair of vertices

○ It is enough for each pair of vertices (i, j) to store the max index of an internal node

on the path from i to j: the last value of k which was used to improve the cost of

i~>j

○ Knowing this vertex, we can recursively obtain shortest paths i~>k and k~j and

recover the entire path

● Undirected graphs:

○ The Floyd-Warshall algorithm also works for undirected graphs, but only when

there are no negative-weight edges

Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:

O(n2 log n) if m=O(n) [sparse]

O(n3 log n) if m =O(n2) [dense]

2. General graphs:

O(n3) if m=O(n) [sparse]

O(n4) if m=O(n2) [dense]

1*Floyd-Warshall: O(n3)

For sparse graphs with

non-negative edges:

use n*Dijkstra

n*Dijkstra (m log n) = O(nm log n) =

n*Bellman-Ford (nm) = O(n2m) =

Can we do better for general graphs?

Motivation

● APSP = n*SSSP

● n*Dijkstra’s algorithm = O(nm log n)

for sparse graphs: O(n2 log n)

● Idea: use n*Dijkstra for general graphs

● Problem: we need to get rid of negative edge costs

Johnson’s algorithm

● Invoke Bellman-Ford SSSP: O(nm)

● Use n times Dijkstra: O(nm log n)

● Total running time: O(nm log n)

This will transform G

into the graph with non-

negative edge weights

For general graphs!

Reweighting technique which does not work

● Natural instinct: add max negative cost to the weight of each edge

● However this does not preserve the original shortest paths

v

t

s

3

1 -2

-1

51

v

t

s

5

3 0

1

73

Before reweighting:

Shortest path s~>t is s-v-t

Most negative m=-2

Add -m to each edge weight.

After reweighting:

Shortest path s~>t is s-t

Reweighting technique: vertex tokens

● Let G=(V,E) be a directed graph with general edge lengths (including

negative)

● Fix a token pv for each vertex v ∈ V (any real number)

● Transform the cost ce of every edge e=(u,v) to ce' = ce + pu – pv

vu
ce=2

pu=-4 pv=-3

ce'= 2 +(-4) – (-3) = 1

● Then the cost of any path P with original length L between two vertices s,t in

G will be modified by exactly the same amount:

L' = L + pu – pv

● Thus the relative lengths of different paths between s and t remain the same

𝐿′ = ෍

𝑎𝑙𝑙 𝑢,𝑣 𝜖 𝑃

[𝑐𝑒 + 𝑝𝑢 − 𝑝𝑣]
The tokens of all intermediate nodes cancel

themselves and leave only the tokens of the

source and the destination vertices

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Sample graph with negative edge

lengths but without negative cycles

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G. Adding s will not

change any shortest paths between

original vertices of G, because s has

no incoming edges

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Adding artificial source vertex s with

edges of cost 0 to every vertex in G

0

0

0

0

0

0

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G

● Run Bellman-Ford and compute the

costs of shortest paths from s to

every other vertex

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

For each vertex: costs of single-

source shortest paths from s

0

0

0

0

0

0

0 -2

-3

-6-1

0

Computing magical vertex tokens

● Compute magical vertex tokens

running SSSP Bellman-Ford

algorithm once

● Add artificial source vertex s which

has an outgoing edge of cost 0 to

every vertex in G

● Run Bellman-Ford and compute the

costs of shortest paths from s to

every other vertex

● At the end - set pv = cost of the

shortest path s~>v

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

For each vertex: costs of single-

source shortest paths from s

0

0

0

0

0

0

0 -2

-3

-6-1

0
These are your magical vertex

tokens, which will make the cost of

each edge non-negative!

Transforming edges

● pv = cost of a shortest path s~>v

● For every edge e=(u,v) new cost ce' = ce + pu – pv

c

y

ba

x

-3

4

-2

-4

-1

2

z

1

Transformed graph with non-negative edge costs:

ready to run n*Dijkstra to compute all-pair shortest paths

0 -2

-3

-6-1

0

c

y

ba

x

0

1

0

2

0

0

z

2

Johnson’s algorithm

● Convert G(V,E) into G' by adding a new vertex s and n edges (s,v) of cost 0 to

every vertex v ∈ V

● Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle – halt]

● For each v ∈ V define pv = cost of the shortest path s~>v in G’

For each edge e=(u,v) ∈ E, define new cost ce' = ce + pu – pv

● Run Dijkstra n times on G using new edge costs and starting from every

vertex v ∈ V

● Extract the cost of the original path for each pair of vertices

Reduction of the APSS problem for general graph to:

1 SSSP for general graphs + n SSSP for graphs with non-negative edge costs

easy?

Think how

Johnson’s algorithm: running time

● Convert G(V,E) into G' by adding a new vertex s and n edges (s,v)

of cost 0 to every vertex v ∈ V

● Run Bellman-Ford (G' with source s) [if it reports a negative-cost

cycle – halt]

● For each v ∈ V define pv = cost of the shortest path s~>v in G'

For each edge e=(u,v) ∈ E, define new cost ce' = ce + pu – pv

● Run Dijkstra n times on G using new edge costs and starting from

every vertex v ∈ V

● Extract the cost of the original path for each pair of vertices

O(n)

O(nm)

O(m)

n*O(m log n)

O(n2)

O(mn log n)

Much better than O(n3) Floyd-Warshall for sparse graphs

Johnson’s algorithm: correctness

● We have already proven that using tokens of each vertex to reweigh edges

does not change the order of paths u~>v: the shortest path remains the

shortest even after reweighting: see Reweighting technique slide

● What remains is to prove the following:

Lemma

For every edge e=(u,v) of G, the reweighted edge cost

ce' = ce + pu – pv is non-negative.

Proof

● Let (u,v) be an arbitrary pair of vertices in G connected by

an edge e u→v with cost ce.

● By construction,

pu = cost of a shortest path from s to u

pv = cost of a shortest path from s to v

● If pu is the cost of a shortest path s~>u

● Then pu + ce is the length of some path from s to v. This

may be a shortest path from s to v, but there could be an

even shorter path from s to v which does not pass

through vertex u.

● Hence, pu + ce ≥ pv

● Therefore, ce' = ce + pu – pv ≥ 0

Lemma

For every edge e=(u,v) of G, the reweighted edge cost

ce' = ce + pu – pv is non-negative.

u v
ce

pu pv

