All-Pairs Shortest Paths
 Lecture 07.08 by Marina Barsky

All-pairs Shortest Paths Problem

Input: directed graph $G=(V, E)$ with edge costs C [no special source vertex]
Output: if G has no negative cycles, the length of a shortest path for each pair of vertices $u, v \in V$

All-pairs shortest paths: possible solutions

Use single-source shortest path algorithm:
Repeat n times (once for each vertex as a source)

1. If the costs are non-negative
n^{*} Dijkstra $(m \log n)=O(n m \log n)= \begin{cases}O\left(n^{2} \log n\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{3} \log n\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$
2. If allowing negative costs:
n^{*} Bellman-Ford $(n m)=O\left(n^{2} m\right)= \begin{cases}O\left(n^{3}\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{4}\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$

Special Dynamic Programming algorithm:

1. Floyd-Warshall: always $O\left(n^{3}\right)$

All-Pairs Shortest Paths
 Floyd-Warshall Algorithm

Dynamic Programming

Order of subproblems

Again - there is no "natural" ordering of subproblems: which subproblem is smaller than the other?

Idea: we invent our own order of subproblems:

- We impose arbitrary ordering on vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots \mathrm{v}_{\mathrm{n}}$
- Each vertex gets a numeric id: $\mathrm{V}=\{1,2, \ldots, \mathrm{n}\}$
- Now we have a sequence $\{1,2, \ldots, n\}$ of vertices
- Similar to knapsack problem, in each iteration k we will compute all shortest paths using only a subset of vertices $\{1,2, \ldots k\}$ as intermediate nodes on each shortest path

Subproblem

- $V=\{1,2, \ldots, n\}$
- We are allowed to use only $\{1, \ldots, k\}$
- Each subproblem $P(i, j, k)$ represents the cost of the shortest path from i to j using only the first $1 \ldots$ vertices in the sequence

Example

Optimal subproblems: intuition

When we allow the next k to be included as intermediate vertex on the path $i \sim>j$, we have the following choices:

- New vertex k is not included as part of the shortest path from i to j.

The cost of the shortest path $\mathrm{i} \sim>\mathrm{j}$ remains $\mathrm{P}(\mathrm{i}, \mathrm{j}, \mathrm{k}-1)$

- If vertex k is used to improve $P(i, j, k-1)$, then k is internal to path $P(i, j, k)$. In this case both $P(i, k, k-1)$ and $P(k, j, k-1)$ are shortest paths which use first $k-1$ vertices [which we already computed as subproblems for $k-1$]

We choose min between $P(i, j, k-1)$ and $[P(i, k, k-1)+P(k, j, k-1)]$
All these min-cost paths are already computed in iteration k -1

Recurrence relation

- Input: directed graph $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$ - where vertices are numbered: $\mathrm{V}=\{1, \ldots \mathrm{n}\}$, and the cost matrix C with all edge costs.
- For each pair $(i, j) \in \mathrm{V}$, let $\mathrm{P}(\mathrm{i}, \mathrm{j}, \mathrm{k})$ be the cost of the shortest path $\mathrm{i} \sim \mathrm{j}$ which uses only k first vertices from V as intermediate nodes on the path.
- Base case: no intermediate vertices are allowed

$$
P(i, j, 0)=\left\{\begin{array}{l}
0 \text { if } i=j \\
C_{i j} \text { if edge }(i, j) \in E \\
\infty \text { otherwise }
\end{array}\right.
$$

Recurrence relation

- Input: directed graph $\mathrm{G}=\{\mathrm{V}, \mathrm{E}\}$ - where vertices are numbered: $\mathrm{V}=\{1, \ldots \mathrm{n}\}$, and the cost matrix C with all edge costs.
- For each pair $(i, j) \in V$, let $P(i, j, k)$ be the cost of the shortest path $i \sim>j$ which uses only k first vertices from V as intermediate nodes on the path.
- Base case: no intermediate vertices are allowed

$$
P(i, j, 0)=\left\{\begin{array}{l}
0 \text { if } i=j \\
C_{i j} \text { if edge }(i, j) \in E \\
\infty \text { otherwise }
\end{array}\right.
$$

- Recurrence: for any k, $0<k \leq n$

$$
P(i, j, k)=\min \left\{\begin{array}{l}
P(i, j, k-1) \\
P(i, k, k-1)+P(k, j, k-1)
\end{array}\right.
$$

Pseudocode

Algorithm FloydWarshall (digraph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, edge costs C)

```
A: = nxn\timesn 3D array indexed by k, i, and j
# base case
for each i }\inV\mathrm{ :
    for each j \inV:
    if i=j A[0,i, i]:= 0
    else if (i, j) \inE A[0, i, j] := Cij
    else }\quadA[0,i,j]:=
```

```
# DP table
```


DP table

for k from 1 to n:
for k from 1 to n:
for i from 1 to n:
for i from 1 to n:
for j from 1 to n:
for j from 1 to n:
A[k,i,j] = min A[k-1,i,j],A[k-1,i,k] + A[k-1,k,j]
A[k,i,j] = min A[k-1,i,j],A[k-1,i,k] + A[k-1,k,j]
return A[n] \# last matrix contains all-pair shortest path costs

```
return A[n] # last matrix contains all-pair shortest path costs
```

Total n^{3} subproblems with $\mathrm{O}(1)$ work per subproblem
Running time $\mathrm{O}\left(\mathrm{n}^{3}\right)$

Floyd-Warshall algorithm: notes

- Negative cycles:
- To trust the results - we need to check that graph does not have negative cycles
- If we scan the diagonal of the final matrix $A[n]$, then all values $A[n, i, i]$ must be 0 .
- If any of distances from node ito itself is <0 - graph contains negative cycles
- Space improvement:
- We do not have to store the entire 3D array to recover actual shortest path between a pair of vertices
- It is enough for each pair of vertices (i, j) to store the max index of an internal node on the path from i to j : the last value of k which was used to improve the cost of i~>j
- Knowing this vertex, we can recursively obtain shortest paths $i \sim>k$ and $k \sim j$ and recover the entire path
- Undirected graphs:
- The Floyd-Warshall algorithm also works for undirected graphs, but only when there are no negative-weight edges

Results: All-Pairs Shortest Paths

1. Graphs with non-negative edge costs:
n^{*} Dijkstra $(m \log n)=O(n m \log n)= \begin{cases}O\left(n^{2} \log n\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{3} \log n\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$
2. General graphs:
n^{*} Bellman-Ford $(n m)=O\left(n^{2} m\right)= \begin{cases}O\left(n^{3}\right) & \text { if } m=O(n) \text { [sparse] } \\ O\left(n^{4}\right) & \text { if } m=O\left(n^{2}\right) \text { [dense] }\end{cases}$
1*Floyd-Warshall:

Can we do better for general graphs?

Motivation

- APSP = n*SSSP
- n^{*} Dijkstra's algorithm $=\mathrm{O}(\mathrm{nm} \log \mathrm{n})$
for sparse graphs: $O\left(n^{2} \log n\right)$
- Idea: use n*Dijkstra for general graphs
- Problem: we need to get rid of negative edge costs

Johnson's algorithm

- Invoke Bellman-Ford SSSP: O(nm)
- Use n times Dijkstra: O(nm log n)
- Total running time: $\mathrm{O}(\mathrm{nm} \log \mathrm{n})$
This will transform G
into the graph with non-
negative edge weights

For general graphs!

Reweighting technique which does not work

- Natural instinct: add max negative cost to the weight of each edge
- However this does not preserve the original shortest paths

Add -m to each edge weight. After reweighting:
Shortest path $\mathrm{s}^{\sim}>\mathrm{t}$ is $\mathrm{s}-\mathrm{t}$

Reweighting technique: vertex tokens

- Let $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ be a directed graph with general edge lengths (including negative)
- Fix a token p_{v} for each vertex $v \in \mathrm{~V}$ (any real number)
- Transform the cost c_{e} of every edge $e=(u, v)$ to $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$

$$
c_{e}^{\prime}=2+(-4)-(-3)=1
$$

- Then the cost of any path P with original length L between two vertices s, t in G will be modified by exactly the same amount:

$$
\begin{aligned}
& \mathrm{L}^{\prime}=\mathrm{L}+\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\mathrm{v}} \\
& L^{\prime}=\sum_{\text {all }(u, v) \in P}\left[c_{e}+p_{u}-p_{v}\right]
\end{aligned}
$$

The tokens of all intermediate nodes cancel themselves and leave only the tokens of the source and the destination vertices

- Thus the relative lengths of different paths between s and t remain the same

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once

Sample graph with negative edge lengths but without negative cycles

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G. Adding s will not change any shortest paths between original vertices of G , because s has no incoming edges

Adding artificial source vertex s with edges of cost 0 to every vertex in G

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex

For each vertex: costs of singlesource shortest paths from s

Computing magical vertex tokens

- Compute magical vertex tokens running SSSP Bellman-Ford algorithm once
- Add artificial source vertex s which has an outgoing edge of cost 0 to every vertex in G
- Run Bellman-Ford and compute the costs of shortest paths from s to every other vertex
- At the end - set $p_{v}=$ cost of the shortest path $\mathrm{s}^{\sim}>\mathrm{V}$

These are your magical vertex tokens, which will make the cost of each edge non-negative!

For each vertex: costs of singlesource shortest paths from s

Transforming edges

- $p_{v}=$ cost of a shortest path $s^{\sim}>v$
- For every edge $e=(u, v)$ new cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$

Transformed graph with non-negative edge costs: ready to run n^{*} Dijkstra to compute all-pair shortest paths

Johnson's algorithm

- Convert $\mathrm{G}(\mathrm{V}, \mathrm{E})$ into G^{\prime} by adding a new vertex s and n edges ($\left.\mathrm{s}, \mathrm{v}\right)$ of cost 0 to every vertex $\mathrm{v} \in \mathrm{V}$
- Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle - halt]
- For each $v \in V$ define $p v=$ cost of the shortest path $s \sim>v$ in G^{\prime} For each edge $e=(u, v) \in E$, define new $\operatorname{cost} c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$
- Run Dijkstra n times on G using new edge costs and starting from every vertex $\mathrm{v} \in \mathrm{V}$
- Extract the cost of the original path for each pair of vertices

Think how

Reduction of the APSS problem for general graph to:
1 SSSP for general graphs +n SSSP for graphs with non-negative edge costs

Johnson's algorithm: running time

$\mathrm{O}(\mathrm{n}) \quad$ - Convert $\mathrm{G}(\mathrm{V}, \mathrm{E})$ into G^{\prime} by adding a new vertex s and n edges (s, v) of cost 0 to every vertex $v \in \mathrm{~V}$
$\mathrm{O}(\mathrm{nm})$ Run Bellman-Ford (G' with source s) [if it reports a negative-cost cycle - halt]
$\mathrm{O}(\mathrm{m}) \quad$ - For each $\mathrm{v} \in \mathrm{V}$ define $\mathrm{pv}=\mathrm{cost}$ of the shortest path $\mathrm{s} \sim_{\sim}>\mathrm{v}$ in G^{\prime} For each edge $\mathrm{e}=(\mathrm{u}, \mathrm{v}) \in \mathrm{E}$, define new $\operatorname{cost} \mathrm{c}_{\mathrm{e}}{ }^{\prime}=\mathrm{c}_{\mathrm{e}}+\mathrm{p}_{\mathrm{u}}-\mathrm{p}_{\mathrm{v}}$

$n^{*} O(m \log n)$

- Run Dijkstra n times on G using new edge costs and starting from every vertex $\mathrm{v} \in \mathrm{V}$

$O\left(n^{2}\right)$

- Extract the cost of the original path for each pair of vertices

$O(m n \log n)$

Much better than $O\left(n^{3}\right)$ Floyd-Warshall for sparse graphs

Johnson's algorithm: correctness

- We have already proven that using tokens of each vertex to reweigh edges does not change the order of paths $u \sim>v$: the shortest path remains the shortest even after reweighting: see Reweighting technique slide
- What remains is to prove the following:

Lemma

For every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of G , the reweighted edge cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$ is non-negative.

Lemma

For every edge $\mathrm{e}=(\mathrm{u}, \mathrm{v})$ of G , the reweighted edge cost $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v}$ is non-negative.

Proof

- Let (u, v) be an arbitrary pair of vertices in G connected by an edge e $u \rightarrow v$ with $\operatorname{cost} c_{e}$.
- By construction,
$p_{u}=$ cost of a shortest path from s to u
$p_{v}=$ cost of a shortest path from s to v

- If p_{u} is the cost of a shortest path $s^{\sim}>u$
- Then $p_{u}+c_{e}$ is the length of some path from s to v. This may be a shortest path from s to v, but there could be an even shorter path from s to v which does not pass through vertex u.
- Hence, $p_{u}+c_{e} \geq p_{v}$
- Therefore, $c_{e}{ }^{\prime}=c_{e}+p_{u}-p_{v} \geq 0$

